Обзор литературы

Клиническое значение удлинения интервала QT на фоне применения антимикробных препаратов: анализ литературы и собственные наблюдения

DOI
10.32756/0869-5490-2024-2-76-83
Скачать статью в PDF

В научном сообществе до сих пор нет однозначной позиции относительно способности антимикробных препаратов удлинять интервал QT и вызывать жизнеугрожающие аритмии, прежде всего, желудочковую тахикардию типа пируэт (torsades de pointes). По данным литературы, самый высокий риск удлинения интервала QT наблюдается при применении макролидов (азитромицина, кларитромицина) и фторхинолонов (левофлоксацина, моксифлоксацина), среди антифунгальных препаратов – вориконазола и флуконазола. Риск возникновения аритмий повышался при комбинированном назначении этих препаратов. Факторами риска удлинения QT были сердечно-сосудистые заболевания, гипокалиемия, гипомагниемия, исходно удлиненный интервал QT, пожилой возраст и женский пол. Нами представлен клинический случай удлинения интервала QT и развития желудочковой тахикардии у пациента 32 лет на фоне терапии моксифлоксацином, а также 16 случаев удлинения интервала QT на фоне применения антимикробных препаратов (левофлоксацин, моксифлоксацин, азитромицин, флуконазол) с 2017 по 2022 гг. Развитие нарушений ритма, в том числе желудочковых аритмий, при удлинении интервала QT отмечено у 87,5% пациентов. Среднее удлинение интервала QT составило 127,0 мс у мужчин и 98,2 мс у женщин и наблюдалось в среднем через 4,4 и 5,4 дня после начала лечения, соответственно. При назначении антимикробных препаратов, удлиняющих интервал QT, следует предварительно оценить наличие факторов риска и сопутствующую терапию, а также мониторировать ЭКГ до и во время лечения. Возможно использование интернет-ресурса для оценки риска развития удлинения QT и желудочковых аритмий.

Полный текст статьи еще не опубликован.

Используемые источники

  1. Лиманкина И.Н. Синдром удлиненного интервала QT И проблема безопас- ности психофармакотерапии. Вестник аритмологии. 2008;52(52):66-71.
  2. Nachimuthu S, Assar MD, Schussler JM. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther Adv Drug Saf 2012;3(5):241-53.
  3. Glassman AH, Bigger JT Jr. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry 2001;158(11):1774-82.
  4. Cubeddu LX. Drug-induced inhibition and trafficking disruption of ion channels: pathogenesis of QT abnormalities and drug-induced fatal arrhythmias. Curr Cardiol Rev 2016;12(2):141-54.
  5. van Noord C, Eijgelsheim M, Stricker BH. Druand non-drug-associated QT interval prolongation. Br J Clin Pharmacol 2010;70(1):16-23.
  6. Sănchez-Chapula JA, Ferrer T, Navarro-Polanco RA, Sanguinetti MC. Voltagdependent profile of human ether-a-go-go-related gene channel block is inflenced by a single residue in the S6 transmembrane domain. Mol Pharmacol 2003;63(5):1051-8.
  7. Mitcheson JS, Chen J, Lin M, et al. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A 2000;97(22):12329-33.
  8. Owens RC Jr, Nolin TD. Antimicrobial-associated QT interval prolongation: pointes of interest. Clin Infect Dis 2006;43(12):1603-11.
  9. Viskin S, Justo D, Halkin A, Zeltser D. Long QT syndrome caused by noncardiac drugs. Prog Cardiovasc Dis 2003;45(5):415-27.
  10. Drew BJ, Ackerman MJ, Funk M, et al. Prevention of torsade de pointes in hopital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol 2010 55:934–47.
  11. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consquences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Phar - maco kinet 2000;38:41–57.
  12. Berger FA, Monadian N, de Groot NMS, et al. QTc prolongation during ciprofloxacin and fluconazole combination therapy: prevalence and associated risk factors. Br J Clin Pharmacol 2018;84(2):369-78.
  13. Zeuli JD, Wilson JW, Estes LL. Effect of combined fluoroquinolone and azole use on QT prolongation in hematology patients. Antimicrob Agents Chemother 2013;57(3):1121-7.
  14. Tilton JJ, Sadr R, Groo VL. Concomitant use of levofloxacin and fluconazole leading to possible torsades de pointes. J Oncol Pharm Pract 2019;25:2004-2006.
  15. Gandhi PJ, Menezes PA, Vu HT, et al. Fluconazoland levofloxacin-induced torsades de pointes in an intensive care unit patient. Am J Health Syst Pharm 2003;60(23):2479-83.
  16. Lannini PB, Circiumaru I: Gatifloxacin-induced QTc prolongation and ventriclar tachycardia. Pharmacotherapy 2001;21:361-2.
  17. Kang J, Wang L, Chen XL, et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 2001;59:122–6.
  18. Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: infrequent side effects from commonly used medictions. Cardiology 2011;120(2):103-10.
  19. Mehrzad R, Barza M. Weighing the adverse cardiac effects of fluoroquinolones: A risk perspective. J Clin Pharmacol 2015;55(11):1198-206.
  20. Cho Y, Park HS. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: a nationwide cohort study in Korea. BMJ Open 2018;8(9):e020974.
  21. Gorelik E, Masarwa R, Perlman A, et al. Fluoroquinolones and cardiovascular risk: a systematic review, meta-analysis and network meta-analysis. Drug Saf 2019;42(4):529-38.
  22. Haring B, Bauer W. Ciprofloxacin and the risk for cardiac arrhythmias: culprit delicti or watching bystander? Acta Cardiol 2012;67(3):351-4.
  23. Inghammar M, SvanstrЪm H, Melbye M, et al. Oral fluoroquinolone use and serious arrhythmia: bi-national cohort study. BMJ 2016;352:i843.
  24. Khan F, Ismail M, Khan Q, Ali Z. Moxifloxacin-induced QT interval prolongtion and torsades de pointes: a narrative review. Expert Opin Drug Saf 2018; 17(10):1029-39.
  25. Lu ZK, Yuan J, Li M, et al. Cardiac risks associated with antibiotics: azithro - mycin and levofloxacin. Expert Opin Drug Saf 2015;14(2):295-303.
  26. Shaffer D, Singer S, Korvick J, Honig P. Concomitant risk factors in reports of torsades de pointes associated with macrolide use: review of the United States Food and Drug Administration Adverse Event Reporting System. Clin Infect Dis 2002;35(2):197-200.
  27. Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. N Engl J Med 2012;366(20):1881-90.
  28. Food and Drug Administration. Azithromycin (Zithromax or Zmax) and the risk of potentially fatal heart rhythms. http://www.fda.gov/Drugs/DrugSafety/ ucm341822.htm.
  29. Maisch NM, Kochupurackal JG, Sin J. Azithromycin and the risk of cardiovasclar complications. J Pharm Pract 2014;27(5):496-500.
  30. Almalki ZS, Guo JJ. Cardiovascular events and safety outcomes associated with azithromycin therapy: a meta-analysis of randomized controlled trials. Am Health Drug Benefits 2014;7(6):318-28.
  31. Sears SP, Getz TW, Austin CO, et al. Incidence of sustained ventricular tachycadia in patients with prolonged QTc after the administration of azithromycin: A retrospective study. Drugs Real World Outcomes 2016;3(1):99-105.
  32. Sutton SS, Hyche S, Magagnoli J, Hardin JW. Appraisal of the cardiovascular risks of azithromycin: an observational analysis. J Comp Eff Res 2017;6(6):509-17.
  33. Schembri S, Williamson PA, Short PM, et al. Cardiovascular events after claithromycin use in lower respiratory tract infections: analysis of two prospective cohort studies. BMJ 2013;346:f1235.
  34. Wong AY, Root A, Douglas IJ, et al. Cardiovascular outcomes associated with use of clarithromycin: population based study. BMJ 2016;352:h6926.
  35. SvanstrЪm H, Pasternak B, Hviid A. Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study. BMJ 2014;349:g4930.
  36. van Haarst AD, van 't Klooster GA, van Gerven JM, et al. The influence of ciapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998;64(5):542-6.
  37. Vieweg WV, Hancox JC, Hasnain M, et al. Clarithromycin, QTc interval prologation and torsades de pointes: the need to study case reports. Ther Adv Infect Dis 2013;1(4):121-38.
  38. Cheng YJ, Nie XY, Chen XM, et al. The role of macrolide antibiotics in increaing cardiovascular risk. J Am Coll Cardiol 2015;66(20):2173-84.
  39. Rao GA, Mann JR, Shoaibi A, et al. Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Ann Fam Med 2014;12(2):121-7.
  40. Chou HW, Wang JL, Chang CH, et al. Risks of cardiac arrhythmia and mortality among patients using new-generation macrolides, fluoroquinolones, and beta-latam/beta-lactamase inhibitors: a Taiwanese nationwide study. Clin Infect Dis 2015;60(4):566-77.
  41. Niedrig D, Maechler S, Hoppe L, et al. Drug safety of macrolide and quinolone antibiotics in a tertiary care hospital: administration of interacting co-medication and QT prolongation. Eur J Clin Pharmacol 2016;72(7):859-67.
  42. Khazan M, Mathis AS. Probable case of torsades de pointes induced by fluconzole. Pharmacotherapy 2002;22(12):1632-7.
  43. Pham CP, de Feiter PW, van der Kuy PH, van Mook WN. Long QTc interval and torsade de pointes caused by fluconazole. Ann Pharmacother 2006;40:1456-61.
  44. Esch JJ, Kantoch MJ. Torsades de Pointes ventricular tachycardia in a pediatric patient treated with fluconazole. Pediatr Cardiol 2008;29(1):210-3.
  45. Alkan Y, Haefeli WE, Burhenne J, et al. Voriconazole-induced QT interval prlongation and ventricular tachycardia: a non-concentration-dependent adverse effect. Clin Infect Dis 2004;39(6):e49-52.
  46. Brown J, Lim L, Koning S. Voriconazole associated torsades de pointes in two adult patients with haematological malignancies. Med Mycol Case Rep 2014;4: 23-5.
  47. Philips JA, Marty FM, Stone RM, et al. Torsades de pointes associated with voriconazole use. Transpl Infect Dis 2007;9(1):33-6.
  48. Кароли Н.А., Апаркина А.В., Григорьева Е.В. и др. Антибактериальная терапия пациентов с COVID-19 на амбулаторном и стационарном этапах. Антибиотики и химиотер 2022;67;1-2:24-31 [Karoli NA, Aparkina AV, Grigoryeva EV, et al. Antibacterial therapy of patients with COVID-19 during the outpatient and hospital stages. Antibiot Khimioter = Antibiotics and Chemotherapy 2022;67(1-2):24-31 (In Russ.)].
  49. Funck-Brentano C, Salem JE. Chloroquine or hydroxychloroquine for COVI19: why might they be hazardous? Lancet 2020:S0140-6736(20)31174-0.
  50. Bauman JL, Tisdale JE. Chloroquine and hydroxychloroquine in the era of SARS-CoV2: caution on their cardiac toxicity. Pharmacotherapy 2020;40:387-88.
  51. BessiПre F, Roccia H, DeliniПre A, et al. Assessment of QT intervals in a case series of patients with Coronavirus Disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intesive care unit. JAMA Cardiol 2020;5(9):1067-9.
  52. Chatre C, Roubille F, Vernhet H, et al. Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. Drug Saf 2018;41(10):919-31.
  53. Chorin E, Wadhwani L, Magnani S, et al. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/ azithromycin. Heart Rhythm 2020;17(9):1425-33.
  54. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med 2020;26(6):808-9.
  55. Cipriani A, Zorzi A, Ceccato D, et al. Arrhythmic profile and 24-hour QT interval variability in COVID-19 patients treated with hydroxychloroquine and azithromycin. Int J Cardiol 2020;316:280-4.
  56. Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020;5(9):1036-41.
  57. Murat B, Akgun H, Akarsu M, et al. The impact of hydroxychloroquine and azithromycin on the corrected qt interval in patients with the novel Coronavirus disease 2019. Rev Assoc Med Bras 2021;67(7):979-84.
  58. Kapoor A, Pandurangi U, Arora V, et al. Cardiovascular risks of hydroxychlorquine in treatment and prophylaxis of COVID-19 patients: A scientific statement from the Indian Heart Rhythm Society. Indian Pacing Electrophysiol J 2020;20(3):117-20.
  59. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug inteactions on QTc interval in exploratory COVID-19 treatment. Heart Rhythm 202017(7):e231-2.
  60. Sapp JL, Alqarawi W, MacIntyre CJ, et al. Guidance on minimizing risk of druinduced ventricular arrhythmia during treatment of COVID-19: A Statement from the Canadian Heart Rhythm Society. Can J Cardiol 2020;36(6):948-51.
  61. Nguyen LS, Dolladille C, Drici MD, et al. Cardiovascular toxicities associated with hydroxychloroquine and azithromycin: an analysis of the World Health Organization Pharmacovigilance Database. Circulation 2020;142(3):303-5.
  62. Sharma A. Chloroquine paradox may cause more damage than help fight COVI19. Microbes Infect 2020;22(4-5):154-6.
  63. Lane JCE, Weaver J, Kostka K, et al; OHDSI-COVID-19 consortium. Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study. Lancet Rheumatol 2020;2(11):e698-711.

Версия на английском языке